55 research outputs found

    Semiconductor optical amplifier-based nonlinear optical-loop mirror with feedback

    Get PDF
    The behavior of a semiconductor optical amplifier (SOA)-based nonlinear loop mirror with feedback has been investigated as a potential device for all-optical signal processing. In the feedback device, input signal pulses (ones) are injected into the loop, and amplified reflected pulses are fed back into the loop as switching pulses. The feedback device has two stable modes of operation - block mode, where alternating blocks of ones and zeros are observed, and spontaneous clock division mode, where halving of the input repetition rate is achieved. Improved models of the feedback device have been developed to study its performance in different operating conditions. The feedback device could be optimized to give a choice of either of the two stable modes by shifting the arrival time of the switching pulses at the SOA. Theoretically, it was found possible to operate the device at only tens of fJ switching pulse energies if the SOA is biased to produce very high gain in the presence of internal loss. The clock division regime arises from the combination of incomplete SOA gain recovery and memory of the startup sequence that is provided by the feedback. Clock division requires a sufficiently high differential phase shift per unit differential gain, which is related to the SOA linewidth enhancement factor

    Incoherent fibre supercontinuum generation for all-optical random number generation

    Get PDF
    Random number generation is a central component of modern information technology, with crucial applications in ensuring communications and information security. The development of new physical mechanisms suitable to directly generate random bit sequences is thus a subject of intense current research, with particular interest in alloptical techniques suitable for the generation of data sequences with high bit rate. One such promising technique that has received much recent attention is the chaotic semiconductor laser systems producing high quality random output as a result of the intrinsic nonlinear dynamics of its architecture [1]. Here we propose a novel complementary concept of all-optical technique that might dramatically increase the generation rate of random bits by using simultaneously multiple spectral channels with uncorrelated signals - somewhat similar to use of wave-division-multiplexing in communications. We propose to exploit the intrinsic nonlinear dynamics of extreme spectral broadening and supercontinuum (SC) generation in optical fibre, a process known to be often associated with non-deterministic fluctuations [2]. In this paper, we report proof-of concept results indicating that the fluctuations in highly nonlinear fibre SC generation can potentially be used for random number generation

    Quantum cryptography via parametric downconversion

    Full text link
    The use of quantum bits (qubits) in cryptography holds the promise of secure cryptographic quantum key distribution schemes. It is based usually on single-photon polarization states. Unfortunately, the implemented ``qubits'' in the usual weak pulse experiments are not true two-level systems, and quantum key distribution based on these imperfect qubits is totally insecure in the presence of high (realistic) loss rate. In this work, we investigate another potential implementation: qubits generated using a process of parametric downconversion. We find that, to first (two-photon) and second (four-photon) order in the parametric downconversion small parameter, this implementation of quantum key distribution is equivalent to the theoretical version. Once realistic measurements are taken into account, quantum key distribution based on parametric downconversion suffers also from sensitivity to extremely high (nonrealistic) losses. By choosing the small parameter of the process according to the loss rates, both implementations of quantum key distribution can in principle become secure against the attack studied in this paper. However, adjusting the small parameter to the required levels seems to be impractical in the weak pulse process. On the other hand, this can easily be done in the parametric downconversion process, making it a much more promising implementation.Comment: 6 pages, Latex (a special style file is attached). Presented in QCM'98 conference. Similar results regarding the insecurity of weak-pulse schemes were also presented by Norbert Lutkenhaus in the same conferenc

    Simultaneous multiple channel all-optical NRZ to CSRZ and RZ to CSRZ format conversion using an SOA-NOLM

    Get PDF
    The optical conversion bandwidth for an all-optical modulation format converter, based on a semiconductor laser amplifier in a nonlinear optical loop mirror (SOA-NOLM), is investigated. 4Ă—10 Gbit/s channels are all-optically converted between both non-return-to-zero (NRZ) and return-to-zero (RZ) format to carrier-suppressed return-to-zero (CSRZ). WDM transmission of the converted signals over a 194 km fibre span is then demonstrated. The receiver sensitivity for the converted four wavelengths is measured and compared after transmission

    Reply to "Comment on "Some implications of the quantum nature of laser fields for quantum computations''''

    Get PDF
    In this revised reply to quant-ph/0211165, I address the question of the validity of my results in greater detail, by comparing my predictions to those of the Silberfarb-Deutsch model, and I deal at greater length with the beam area paradox. As before, I conclude that my previous results are an (order-of-magnitude) accurate estimate of the error probability introduced in quantum logical operations by the quantum nature of the laser field. While this error will typically (for a paraxial beam) be smaller than the total error due to spontaneous emission, a unified treatment of both effects reveals that they lead to formally similar constraints on the minimum number of photons per pulse required to perform an operation with a given accuracy; these constraints agree with those I have derived elsewhere.Comment: A reply to quant-ph/0211165. Added more calculations and discussion, removed some flippanc

    Continuous-Variable Quantum Teleportation with a Conventional Laser

    Get PDF
    We give a description of balanced homodyne detection (BHD) using a conventional laser as a local oscillator (LO), where the laser field outside the cavity is a mixed state whose phase is completely unknown. Our description is based on the standard interpretation of the quantum theory for measurement, and accords with the experimental result in the squeezed state generation scheme. We apply our description of BHD to continuous-variable quantum teleportation (CVQT) with a conventional laser to analyze the CVQT experiment [A. Furusawa et al., Science 282, 706 (1998)], whose validity has been questioned on the ground of intrinsic phase indeterminacy of the laser field [T. Rudolph and B.C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)]. We show that CVQT with a laser is valid only if the unknown phase of the laser field is shared among sender's LOs, the EPR state, and receiver's LO. The CVQT experiment is considered valid with the aid of an optical path other than the EPR channel and a classical channel, directly linking between a sender and a receiver. We also propose a method to probabilistically generate a strongly phase-correlated quantum state via continuous measurement of independent lasers, which is applicable to realizing CVQT without the additional optical path.Comment: 5 pages, 2 figure

    Entanglement of photons

    Full text link
    It is argued that the title of this paper represents a misconception. Contrary to widespread beliefs it is electromagnetic field modes that are ``systems'' and can be entangled, not photons. The amount of entanglement in a given state is shown to depend on redefinitions of the modes; we calculate the minimum and maximum over all such redefinitions for several examples.Comment: 5 pages ReVTe

    Security of quantum cryptography using balanced homodyne detection

    Full text link
    In this paper we investigate the security of a quantum cryptographic scheme which utilizes balanced homodyne detection and weak coherent pulse (WCP). The performance of the system is mainly characterized by the intensity of the WCP and postselected threshold. Two of the simplest intercept/resend eavesdropping attacks are analyzed. The secure key gain for a given loss is also discussed in terms of the pulse intensity and threshold.Comment: RevTeX4, 8pages, 7 figure

    Pulse-mode quantum projection synthesis: Effects of mode mismatch on optical state truncation and preparation

    Full text link
    Quantum projection synthesis can be used for phase-probability-distribution measurement, optical-state truncation and preparation. The method relies on interfering optical lights, which is a major challenge in experiments performed by pulsed light sources. In the pulsed regime, the time frequency overlap of the interfering lights plays a crucial role on the efficiency of the method when they have different mode structures. In this paper, the pulsed mode projection synthesis is developed, the mode structure of interfering lights are characterized and the effect of this overlap (or mode match) on the fidelity of optical-state truncation and preparation is investigated. By introducing the positive-operator-valued measure (POVM) for the detection events in the scheme, the effect of mode mismatch between the photon-counting detectors and the incident lights are also presented.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
    • …
    corecore